36 research outputs found

    Molecular propensity as a driver for explorative reactivity studies

    Full text link
    Quantum chemical studies of reactivity involve calculations on a large number of molecular structures and comparison of their energies. Already the set-up of these calculations limits the scope of the results that one will obtain, because several system-specific variables such as the charge and spin need to be set prior to the calculation. For a reliable exploration of reaction mechanisms, a considerable number of calculations with varying global parameters must be taken into account, or important facts about the reactivity of the system under consideration can go undetected. For example, one could miss crossings of potential energy surfaces for different spin states or might not note that a molecule is prone to oxidation. Here, we introduce the concept of molecular propensity to account for the predisposition of a molecular system to react across different electronic states in certain nuclear configurations. Within our real-time quantum chemistry framework, we developed an algorithm that allows us to be alerted to such a propensity of a system under consideration.Comment: 10 pages, 7 figure

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Interactive Chemical Reactivity Exploration

    Full text link
    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.Comment: 36 pages, 14 figure

    Mapping the Space of Chemical Reactions Using Attention-Based Neural Networks

    Full text link
    Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires the identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction center, and the distinction between reactants and reagents. This work shows that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching.Comment: https://rxn4chemistry.github.io/rxnfp

    One Bronze Medal for Switzerland at the 48th International Chemistry Olympiad in Tbilisi, Georgia: 48th International Chemistry Olympiad

    No full text
    Four Swiss high school students participated in the 48th International Chemistry Olympiad (IChO), which took place from July 23 to August 1 in Tbilisi, Georgia. Dominic Egger, Nicolà Gantenbein, Simone Heimgartner and Diego Zenhäusern competed against 260 other students from 71 countries. Dominic Egger brought home a well-deserved bronze medal
    corecore